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Abstract

Practitioners are increasingly exploring the use of contextualized, data-driven decision policies in domains such as ed-
ucation, mobile health, behavioral science, or public policy. In these settings, it is common to gather initial pilot data to
explore the potential benefit of new interventions, such as in the form of an A/B study. Estimating the benefits of future
experimentation is important because additional data collection may incur significant operational costs, which must be
weighed against the potential for learning a high-performing policy. Given a small amount of pilot data, we present
a method in the linear contextual bandit setting for characterizing the quality of a dataset by computing the effective
number of samples relative to minimax optimal batch exploration. When additional data collection is necessary, we ex-
tend existing algorithms for batch exploration and prove data-dependent reductions in sample complexity proportional
to the quality of an initial dataset. In numerical experiments using simulated data, we illustrate both the benefit of our
method in estimating the quality of the pre-existing data and how our exploration strategy can be used to efficiently
gather additional data to find near-optimal policies.
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ploration, linear bandits



1 Introduction

The use of machine learning methods to discover data-driven, contextual decision policies is increasingly receiving at-
tention across a wide range of application domains [2, 5, 7, 8]. Currently, a hindrance to deploying data-driven methods
in practice is that it is frequently necessary to characterize the expected benefit of future experimentation in advance.
In real-world experiments, adding an additional 100 participants to a trial can require thousands of dollars and months
of effort. Thus, researchers must weight the cost of collecting additional data against the potential for learning a better
policy. In practice, it is exceedingly common to run small pilot studies before running a full-scale experiment. Such pilot
data enables researchers to estimate how many additional participants their study will need to reach statistical signifi-
cance for a given effect size (e.g., using a power analysis). However, it remains unclear how to design such forecasting
methods for studies employing contextualized decision policies.

Moreover, most existing reinforcement learning algorithms are adaptive to past treatments and outcomes, presenting sig-
nificant operational challenges to deploying these algorithms in practice. The ability to immediately update a policy
after each step not only requires significant engineering overhead and personnel training, it may be impossible in longi-
tudinal studies with delayed rewards or when treatments are assigned to multiple participants in parallel. It may also
be necessary for policies to be audited for undesirable behavior (e.g., biased treatment allocation) prior to deployment,
precluding the use of fully adaptive policies. Though it is often feasible to deploy stochastic, contextualized policies for
data collection, practitioners require policies that are non-adaptive to incoming data for real-world experiments.

Recently, Zanette et al. [9] proposed the sampler-planner algorithm, which leverages offline state information to design a
single, non-adaptive policy that learns an ϵ-optimal policy with optimal online sample complexity. The ability to leverage
historical context information is often feasible in practice; for example, many organizations have access to demographic
information about past study participants.

In this work, we aim to lower the barrier to conducting experiments using contextualized, data-driven decision policies
in practice. We formalize the problem in the linear contextual bandit setting and present an extension to the sampler-
planner algorithm that can be used to assess the quality of an initial dataset and guide future data collection to efficiently
identify near-optimal policies. Specifically, we present a characterization of the quality of a pilot dataset by computing
the effective number of samples relative to minimax optimal batch exploration. This equivalent index can be used to
assess the efficiency of the initial data collection strategy and the potential benefit of optimal exploration for future
data collection. We provide an initialization strategy that generates an exploration policy for future data collection and
prove data-dependent reductions in sample complexity directly proportional to the quality of the pilot data. Lastly, we
demonstrate the efficacy of our methods in numerical experiments on simulated data.

2 Setting

We consider a stochastic linear contextual bandit model where each context s ∈ S is sampled from a distribution µ. For
each context s, a context-dependent action set As is made available to the learner. The bandit instance is defined by a
known feature extractor ϕ(s, a) : S × As → Rd and an unknown parameter θ⋆ ∈ Rd. Upon choosing action a ∈ As, the
environment reveals a linear reward function r(s, a) = ϕ(s, a)⊤θ⋆+η corrupted by mean-zero noise η. We define a policy
π to be a mapping from states s ∈ S to a probability distribution over the action spaceAs. We say that π is adaptive if the
distribution at ∼ π(st) is a function of the historyHt−1 = {(si, ai, ri)}t−1

i=1 and that π is non-adaptive if this distribution is
fixed.

In this work, we differentiate between exploration policies πe and exploitation policies π̂. Exploration policies are used to
interact with the environment to collect a dataset D = {(st, at, rt)}Nt=1, where at ∼ πe(st). Given a dataset D, one can
construct a regularized least-squares predictor θ̂ with regularization λ > 0, which defines an exploitation policy π̂.

Σ̂ =

N∑
t=1

ϕ(st, at)ϕ(st, at)
⊤ + λI, θ̂ =

(
Σ̂−1

)Ninit∑
t=1

ϕ(st, at) · rt, π̂(s) = argmax
a∈As

ϕ(s, a)⊤θ̂ (1)

Unlike most prior work in the linear contextual bandit literature which aims to minimize cumulative regret [1, 4], ex-
ploration policies are not penalized for taking actions that incur large online regret. Instead, the objective is to collect
an informative dataset D such that the resulting exploitation policy π̂ is near-optimal. Specifically, we optimize for the
suboptimality Es∼µ

[
maxa∈As

ϕ(s, a)⊤θ⋆ − ϕ (s, π̂(s))
⊤
θ⋆
]

of an exploitation policy π̂ with respect to the optimal policy
π⋆. This objective is analogous to simple regret in the multi-armed bandit literature [3]. By algebraic manipulation (see
[9], pg. 16), one can show that a bound on the maximum prediction error, ∆(π̂) = Es∼µ

[
maxa∈As

∣∣∣ϕ(s, a)⊤(θ⋆ − θ̂)
∣∣∣] ≤ ϵ, is

sufficient for bounding the suboptimality by 2ϵ.
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Algorithm 1 Planner

1: input: contexts Coffline = {sm}Mm=1, Ceval = {si}Neval
i=1 ,

initial data Dinit = {(st, at, rt)}Ninit
t=1 , regularization λ

2: if Dinit ̸= ∅ then
3: m̃← INITIALIZATIONSTRATEGY(Dinit, Coffline, Ceval)

4: Σm̃+1 = Σ̂init

5: else
6: m̃ = 0;Σ1 = λI

7: end if

8: for m = m̃+ 1, 2, . . .M do
9: if det(Σm) > 2 det(Σm) or m = m̃+ 1 then

10: m← m; Σm ← Σm

11: end if
12: Define πm : s 7→ argmaxa∈As

∥ϕ(s, a)∥Σ−1
m

13: Receive context sm from Coffline

14: Define ϕm = ϕ(sm, πm(sm))

15: Σm+1 = Σm + α · ϕmϕ⊤
m

16: end for
17: output: policy mixture πmix of {πm̃+1, . . . , πM}

Initial Data: In this work, we assume that the learner has access to an initial datasetDinit = {(st, at, rt)}Ninit
t=1 . We assume

that Dinit was gathered using an exploration policy πe
init, which may be adaptive or non-adaptive. We also assume the

existence of a large collection of offline context data C = {si} (where |C| ≫ Ninit), which is sufficiently large to be split
into an evaluation set Ceval and offline training set Coffline.

Given Dinit, one can construct the covariance matrix Σ̂init, regularized least-squares predictor θ̂init, and linear argmax
policy π̂init as defined in Equation (1). Furthermore, Dinit can optionally be used to generate a new exploration policy
πe

after. This policy is used to collect an additional dataset Dafter = {(st, at, rt)}Nafter
t=1 , where at ∼ πe

after(st). Analogously
to π̂init, one can define the linear argmax policy π̂after, where θ̂after is the regularized least-squares predictor learned from
Dinit ∪ Dafter. Our goal is design an exploration policy πe

after given Dinit such that the suboptimality of π̂after is minimized.

Assumptions: We assume that for each (st, at, rt) ∈ Dinit ∪ Dafter, the reward was generated using the true reward
function. While we allow πe

init to be adaptive, we assume that the noise ηt is 1-sub-Gaussian conditioned on the filtration
Ft−1 such that Ht−1 is Ft−1-measurable. Lastly, we assume that all features are bounded in ℓ2 norm, ∀(s, a) ∈ S ×
As, ∥ϕ(s, a)∥2 ≤ 1, and that all states in C, Dinit, and Dafter were sampled i.i.d. from the true distribution µ.

3 Algorithm

In this section, we present a different characterization of dataset quality via the equivalent index ñ, which measures the
number of samples of optimal exploration that would yield a policy that is at least as optimal as π̂init. To calculate ñ,
we leverage the sampler-planner algorithm [9]. We briefly review the sampler-planner algorithm before outlining our
equivalent index computation and initialization strategy.

3.1 Sampler-Planner Algorithm

Suppose for now that Dinit = 0. The sampler-planner algorithm [9] proceeds in two phases: (1) the planner (Algorithm 1)
iterates over the offline context set Coffline = {sm}Mm=1 for M steps and generates a mixture of policies πmix = {πm}Mm=1 to
be used as an exploration policy, and (2) the sampler executes this policy during online exploration for N steps, randomly
sampling from πmix for each online context. We enforce that N ≤ M and define the hyperparameter α = N/M to be the
ratio of online to offline contexts.

3.2 Initialization Strategy

In this work, we extend the sampler-planner algorithm to take an initial dataset Dinit as an input. Given Dinit, we define
m̃ to be the largest index m such that the empirical uncertainty over Ceval with respect to Σ̂init is less than or equal to the
empirical uncertainty with respect to Σm.

u(Σ̂) =
1

Neval

Neval∑
i=1

max
a∈Asi

∥ϕ(si, a)∥Σ̂−1 , m̃ = argmax
m∈[M ]

m : u(Σ̂init) + 2

√
λ log(8M/δ)

2Neval
≤ u(Σm) (2)

The offset term results from Hoeffding’s inequality and ensures that the inequality holds for the true expectations with
high probability. m̃ can be additionally interpreted as the index at which π̂init is at most as suboptimal as the planner’s
policy at stage m = m̃. We define ñ = α · m̃, which places m̃ on the same scale as Ninit when α < 1.
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Algorithm 2 Initialization Strategy

1: input: Dinit = {(st, at, rt)}Ninit
t=1 , Coffline = {sm}Mm=1, Ceval = {si}Neval

i=1 , regularization λ

2: Generate Σ1, ...,ΣM using Algorithm 1 without Dinit ▷ Generate reference covariance matrices

3: Let m̃ = argmaxm∈[M ] m : u(Σ̂init) + 2
√

λ log(8M/δ)
2Neval

≤ u(Σm) ▷ Compute equivalent index

4: output: equivalent index m̃

Given a non-empty initial datasetDinit ̸= 0, the planner begins by running the initialization strategy (Algorithm 2), which
computes the equivalent index as described above. The initialized planner then sets Σ̂init as its initial covariance matrix
(as opposed to λI) and runs an identical procedure to the uninitialized case for M − m̃ steps. This yields a policy mixture
πmix = {πm}Mm=m̃+1 to be used as an exploration policy πe

after. The sampler plays πmix for N − ñ steps during online
exploration, generating a dataset Dafter = {(s′n, a′n, r′n)}Nn=ñ+1. In the following section, we evaluate the suboptimality of
π̂after, the policy learned from Dinit ∪ Dafter.

4 Main Result

The following theorem provides a sample complexity bound on the initialized sampler-planner algorithm.
Theorem 1. Let Dinit be an arbitrary dataset satisfying the assumptions in Section 2 and let m̃ be its equivalent index (Eq. 2).
Consider running Alg. 1 initialized with Σ̂init for M − m̃ offline iterations, where M = Ω̃(d

2β
λϵ2 ), and running the sampler for N − ñ

online iterations, where N = Ω̃(dβϵ2 ), with regularization λ ∈ (Ω(ln(d/δ), d]. For any ϵ ≤ 1, with probability at least 1 − δ the
suboptimality of the greedy policy π̂after satisfies Es∼µ

[
maxa∈As ϕ(s, a)

⊤θ⋆ − ϕ(s, π̂after(s))
⊤θ⋆

]
≤ ϵ

Due to space this proof is omitted. Our main contribution is in proving that our initialization strategy induces the same
upper bound on the planner’s cumulative uncertainty as in the uninitialized setting, after which our proof closely follows
the structure of [9]. While many possible initialization strategies are feasible (e.g., comparing determinants or matrix
norms), the main implication of this theorem is that m̃ and ñ precisely characterize the reduction in sample complexity
induced by Dinit. For a dataset of high quality (i.e., a dataset that yields a policy that close to ϵ-optimal), m̃ will be large
because fewer samples are needed to reach ϵ-optimality. For datasets of low quality, m̃ will be low. In the uninitialized
setting (Dinit = ∅), the sample complexity is identical to that of [9].

The ratio of ñ/Ninit can also be used as a heuristic to assess the sample efficiency of πe
init relative to the optimal exploration

strategy. For example, suppose that πe
init pulls arms uniformly at random (i.e., a randomized controlled trial), as is

standard for most studies. If ñ/Ninit is less than 1, this implies that random allocation requires significantly more samples
to learn an ϵ-optimal policy than optimal exploration. This also implies that there is significant benefit to collecting
additional data using the initialized sampler-planner: optimal exploration can greatly reduce the number of samples,
and thus the amount of money or resources required to learn an ϵ-optimal policy. If ñ/Ninit ≈ 1, then there is little benefit
to deploying optimal exploration strategies over random assignment. This situation might arise when the context space
has little structure or the optimal treatment is easy to identify.

Exploration Policy initialized sampler-planner

Ninit
20 0

Ninit N

initial data

N – ñ

reduction in sample complexity
V⋆

Figure 1: Numerical experiments using simulated data. Left: Assessing the quality of initial data. Right: Future
exploration with data-dependent reductions in sample complexity.
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5 Experiments

In this section, we report on numerical experiments using simulated data. We use the same simulator as [9], which
is designed such that the context space contains structure to be exploited by optimal exploration. A random policy is
unlikely to perform well since half of the actions lead to features that are zero. A policy which only chooses actions by
the largest norm is also likely to underperform since certain action have large norms but lead to small rewards.

We run two experiments: (1) we compute ñ as a function of Ninit for various initial exploration policies to test our
method’s ability to assess initial dataset quality and (2) we initialize the sampler-planner with various initial datasets,
testing the extent to which our data-dependent reductions in sample complexity hold in practice. In our experiments,
we reference the following exploration policies πe

init: Sampler: the (uninitialized) sampler-planner using N = M = 2Ninit;
UCB: standard LinUCB [6]; Fixed: a policy that always return a fixed action (at = 1); Opt: an oracle policy that chooses the
action which yields the highest online reward; Random: a policy that chooses each action uniformly at random; MaxNorm:
a policy that chooses the action that yields the largest ℓ2 norm.

In Figure 1 (left), we explore how ñ changes as a function of Ninit and πe
init. More specifically, we generate Dinit for

various sizes of Ninit ∈ [0, 100] using all exploration policies πe
init listed above. We plot the equivalent index ñ (y-axis) as a

function of Ninit (x-axis) and include linear trend-lines for each policy. We find that exploration policies of higher quality
are assigned a greater equivalent index ñ. Policies that explore at an optimal or near-optimal rate (e.g., Sampler or UCB)
yield a higher equivalent index for the same Ninit as policies that explore at suboptimal rates (e.g., Random or Fixed).

In Figure 1 (right), we verify the results of Theorem 1, namely that ñ characterizes the data-dependent reductions in
sample complexity when collecting additional data using our initialization strategy. For each exploration policy, we
generate an initial dataset Dinit of size Ninit = 20, which is plotted on the left half of the figure. We run the initialized
sampler-planner for N − ñ steps with N = 60, plotted on the right half of the figure. In gray, we plot the uninitialized
sampler-planer for reference and average values of N − ñ are plotted as vertical lines. We find that the reduction in
sample complexity is proportional to quality of Dinit: for initial datasets of high quality (e.g., Sampler or UCB), we require
a few more than N −Ninit samples to compute a near-optimal policy. For datasets of low quality (e.g., Random or Fixed),
we find that they require closer to N samples to compute a near-optimal policy.

6 Conclusion

In this work, we present a novel extension to the sampler-planner algorithm [9] which accounts for the presence of initial
data. We provide a characterization of initial dataset quality via an equivalent index computation and prove that our
initialization strategy leads to reductions in sample complexity that directly proportional to the quality of the initial
dataset. In future work, we aim to explore how initial reward information can be used to change the planner’s policy
and to study our algorithm’s performance under reward misspecification.
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